A Constraint-Reduced Algorithm for Semidefinite Optimization Problems with Superlinear Convergence

نویسنده

  • Sungwoo Park
چکیده

Constraint reduction is an essential method because the computational cost of the interior point methods can be effectively saved. Park and O’Leary proposed a constraint-reduced predictor-corrector algorithm for semidefinite programming with polynomial global convergence, but they did not show its superlinear convergence. We first develop a constraintreduced algorithm for semidefinite programming having both polynomial global and superlinear local convergences. The new algorithm repeats a corrector step to have an iterate tangentially approach a central path, by which superlinear convergence can be achieved. This study proves its convergence rate and shows its effective cost saving in numerical experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Constraint-reduced Algorithm for Semidefinite Optimization Problems using HKM and AHO directions

We develop a new constraint-reduced infeasible predictor-corrector interior point method for semidefinite programming, and we prove that it has polynomial global convergence and superlinear local convergence. While the new algorithm uses HKM direction in predictor step, it adopts AHO direction in corrector step to achieve a faster approach to the central path. In contrast to the previous constr...

متن کامل

On the Asymptotic Superlinear Convergence of the Augmented Lagrangian Method for Semidefinite Programming with Multiple Solutions

Solving large scale convex semidefinite programming (SDP) problems has long been a challenging task numerically. Fortunately, several powerful solvers including SDPNAL, SDPNAL+ and QSDPNAL have recently been developed to solve linear and convex quadratic SDP problems to high accuracy successfully. These solvers are based on the augmented Lagrangian method (ALM) applied to the dual problems with...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

On the Local Convergence of a Predictor-Corrector Method for Semidefinite Programming

We study the local convergence of a predictor-corrector algorithm for semideenite programming problems based on the Monteiro-Zhang uniied direction whose polynomial convergence was recently established by Monteiro. We prove that the suucient condition for superlinear convergence of Potra and Sheng applies to this algorithm and is independent of the scaling matrices. Under strict complementarity...

متن کامل

Stabilized Sequential Quadratic Programming for Optimization and a Stabilized Newton-type Method for Variational Problems without Constraint Qualifications∗

The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve fast convergence despite possible degeneracy of constraints of optimization problems, when the Lagrange multipliers associated to a solution are not unique. Superlinear convergence of sSQP had been previously established under the secondorder sufficient condition for optimality...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Optimization Theory and Applications

دوره 170  شماره 

صفحات  -

تاریخ انتشار 2016